Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First Semester M.Tech. Degree Examination, Dec.2014/Jan.2015 Finite Element Method

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. What are the advantages of finite element method over finite difference method? (04 Marks)
 b. Explain Petrov-Galerkin method for upwinding in one dimension as applied to steady state problem. (06 Marks)
 - c. Solve the governing equation $\frac{d^2\theta}{d\xi^2} \mu^2\theta$ by Rayleigh Ritz method. (10 Marks)
- 2 a. A beam of length 10m, fixed at one end and supported by roller at the other end carries a 20kN concentrated load at the centre of the span. By taking modulus of elasticity of material as 200GPa and moment of inertia as 24 × 10⁻⁶m⁴. Determine the following for the beam as shown in Fig.Q.2(a).
 - i) Deflection under load.
 - ii) Shear force and bending moment at mid span.
 - iii) Reaction at supports.

(15 Marks)

20KN

b. Explain artificial compressibility scheme.

(05 Marks)

- 3 a. What is a discrete system? Explain the steps involved in discrete system analyses with an example of heat flow in a composite slab under steady state. (12 Marks)
 - b. Explain the following:
 - i) Basis function.
 - ii) Boundary condition.
 - iii) Coordinate systems.

(08 Marks)

- 4 a. Explain the stability of various time stepping schemes.

 (05 Marks)
 - b. Determine the temperature distribution in the Fig.Q.4(b), with respect to time by Crank Nicolson method, assuming initial temperature of the fin equal to the atmospheric temperature 25°C, if the bar temperature is suddenly raised to a temperature 100°C and maintained at that value. Take a heat capacity of 2.42 × 10⁶ W/m³°C and time step of 0.1 sec. (15 Marks)

14MTP/MTH12

a. Determine the expressions for equivalent nodal forces for a quadrilateral element as shown in Fig.Q.5(a) using isoparametric formulation. Also find the numerical values of nodal forces if the element is 20mm thick, $T_x = 10 \text{N/mm}^2$ and $T_y = 15 \text{N/mm}^2$.

- Explain the term axi-symmetric problems and give the constitutive law for such problems.
- Derive the shape function and gradient matrix for two dimensional linear triangular 6 elements.
 - Explain the following:
 - i) Mesh convergence
- ii) Mixed convection heat transfer.

- (10 Marks)
- 7 An axial load of 300kN is applied to 20°C to the rod as shown in Fig.Q.7. The temperature is the raised to 60°C. Determine: i) Nodal displacements; ii) Stress in each material; iii) Support reactions. (20 Marks)

Fig.Q.7

Take

(1) Aluminium (2) Steel
$$E_{1} = 70 \times 10^{3} \text{ N/mm}^{2}$$

$$E_{2} = 200 \times 10^{3} \text{ N/mm}^{2}$$

$$A_{1} = 900 \text{mm}^{2}$$

$$A_{2} = 1200 \text{mm}^{2}$$

$$A_{2} = 12 \times 10^{-6} \text{ mm/mm}^{2}$$

$$I_{1} = 200 \text{mm}$$

$$I_{2} = 300 \text{mm}$$

- 8 The Fig.Q.8(a) shows a thin plate of uniform thickness of 1mm, Young's modulus E = 200GPa, weight density of the plate = 76.6×10^{-6} N/mm³. In addition to its weight it is subjected to a point load of 100N at its midpoint. Determine the following:
 - i) Global stiffness matrix 'K' and global load vector 'F'.
 - Nodal displacement and stresses in each element.

Make the plate model with 2 bar element.

(15 Marks)

b. Briefly explain convection in porous media.

(05 Marks)